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STRAIN RATE SENSITIVITY AND YIELD POINT BEHAVIOR
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Abstract—An empirical description of the rate sensitive behavior of mild steel based on a logarithmic dependence
of flow stress on strain rate is examined in detail. It is shown that the law provides a good representation of the
material response for strains up to about 5:0 percent. The delayed yield phenomenon, which is a striking
characteristic of mild steel behavior is included and a mechanism previously found to be accurate in repre-
senting the delay time under constant stress is used to determine the delay time under complex stress histories.
The relaxation from the upper yield point resulting from the delay time in a constant strain rate situation is
prescribed by the rate sensitive behavior of the material.

It is shown that the response of the material is a functional of the stress history and has a fading memory
in strain as well as time. The characteristic memory strain is found to be small so that for large strains the in-
fluence of the history is small and an equation-of-state representation is appropriate. For small strains and strain
histories of rapidly changing type the integral representation must be used.

The theory is applied to the prediction of the response of a beam subject to constant rate of curvature and
the predicted response compared with published experimental data. In addition, the transverse impact of a
mass on a beam is investigated and the theory is used to predict the onset of yielding in the beam. This problem
is of importance in the design of highway guard-rails. .

1. INTRODUCTION

THE study of the dynamic plastic behavior of metals is at present a subject of considerable
practical importance. A substantial body of experimental work has been published, but
not all of it is consistent and there has been much variability in the interpretation of the
experimental results. There is, as is well known, some difference in the positions taken by
various experimentalists on the question of the rate dependence of certain aluminum alloys.
(For the most recent statements on this subject one might refer to the colloquium edited
by Huffington [1].) There is no question, however, that iron and mild steel are extremely
rate sensitive materials. The amount of experimental data available on strain rate effects
in mild steel is not as extensive as that on other metals such as aluminum and copper and
this is surprising in view of its commercial importance. It is significant that the flow stress
in mild steel has a highly non-linear dependence on strain rate and that the response is
further complicated by the presence of a delayed yield phenomenon.

While attempts to describe the rate dependent behavior of plastics and certain other
non-metals have been made with varying success within the theories of linear or non-
linear viscoelasticity, in metals the approach has been to propose empirical relations
between stress, strain and strain rate. Thus interpretations of strain rate effects in metals
have been based on an equation of state of the form

£, = g*(o,¢,)
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where ¢, is the plastic strain, ¢ the stress and g* some suitable function of ¢ and ¢,. Since
¢, =¢—0/E
where ¢ is the total strain and E the Young’s modulus this equation may take the form
Eé=d+g(o,¢). o))

An equation of this form was introduced by Malvern [2] and attempts have been made to
obtain the form of g or g* experimentally by Rajnak and Hauser [3] for aluminum and
by Marsh and Campbell [7] for mild steel.

A relationship such as (1) is not properly an equation of state since by implication an
equation-of-state relating three quantities should provide a unique value for one of the
three quantities if the other two are specified. Equation (1), even in its simplest form (pro-
posed by Sokolovsky [5] and used by Malvern [2] and others) namely

glo,e) = %[a— fle), 7 = const., )

where o = f(g) is the ‘“‘static’ stress-strain curve, implies that the stress is a functional
(and not a function) of the strain and strain rate; for, writing (1) with (2) in the form

dla— f(e)}/dt+ o — f(¢)]/r = (E—df/de) de/dt
leads on integration to

o = f(£)+J‘ (E—df/de')exp (—-t——r—t—,)ﬁs’/@t’ dr, & =¢&{t)

0o

so long as & > 0 and the origin of the time scale is chosen such that ¢(0) = 0 and &0) = 0.
This indicates that a description which neglects the influence of strain history on stress
must be an approximate one.

The representation of g in the form

glo,¢) = g o~ f(e)]

which is an extension of the simple form used above is indicated by certain experimental
results (e.g., on copper by Riparbelli [6]) and can, depending on the form of g, lead to a
considerable simplification in the mathematical analysis of physical problems involving
impact and wave propagation. The primary purpose of the paper is to examine in detail
the response of mild steel as predicted by a particular constitutive law of this type and to
show that the delayed yield phenomenon can be brought into the theory in a natural way.
The relation between stress and strain at constant strain rate is extended to the bending of
beams and the resulting moment curvature relation is compared with available experi-
mental data. In addition, the results on the delay time are used to predict the onset of yield-
ing in an impact problem of technical importance.
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2. CONSTANT STRAIN RATE BEHAVIOR

2.1 Strain rate sensitivity

It is proposed that the response of the material from the unrestrained, unstressed state
be described by the two basic equations

Eé =g, t<t, (3a)
Eé¢ = 6+(0./1){explo— f(e)l/o.—1}; t >ty (3b)

providing £ > 0.

The quantities ¢, and 7 are a characteristic stress and a natural time respectively and
the delay time ¢, is dependent on the stress history in the interval 0 < ¢t < t;. A method for
the determination of ¢, for specified stress histories will be given in the following section.

In a situation in which the strain is prescribed it is convenient to write (3b) in the form

& oo+ fexplo—f(@fo.— 1} = (E—dfjde) S (elo) @

which by suitable manipulations and use of the integrating factor exp{t/t+{Ec— f(¢)}/o.}
leads to the integral

t“‘d) exp(_Es—f(s))( 0¥~ f(s*))
T

1—exp—2
aC

1-[' ( t—t ( E(s—s'))
+1——| exp|———]exp|— exp
o)., T

c [4

o(t) = f(g)—o.In {exp
f&)—S(€)

[

)(E —df/deYoe' /ot dt'} %)

where o* = Eg* is the value of the stress at t = t, and ¢’ is used to denote &(t').

Since it will be subsequently shown that ¢* is always greater than the strain correspond-
ing to the static lower yield point for all strain rates of practical importance, the fact that
df/de is very much less than E over most of the plastic range can be used to simplify the
above result. The term f(g)— f(¢') is as a consequence, negligible in comparison to E¢— E¢’
and the above result reduces to

o = g0 o.nforp| - 1) exp - E )| cxp L) )

< o-C
E( o¢'
+1——;j‘ exp —e—dt'}. (6)
cJ tq

or
The representation of stress in terms of strain history thus involves a fading memory in
time with a relaxation time 7 (using the terminology of viscoelasticity theory) and in addi-
tion has a fading memory in strain with the characteristic memory strain given by ¢./E.
In the case of constant strain rate, ¢ = « the reduced form of (5) becomes

_Es—f(s*))exp (_s—e*)
GC

at

£—¢* E(c¢—¢*) Eart
el -2 5} g

t—t

_ E(e—¥¢)

[4

exp

o = f(g)—o0, ln{exp

+[1—exp
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For large strains the above equation may be approximated by
g = f(e&)+o.In(1+ Eat/o,). (8)

Curves of o against log o were given by Marsh and Campbell 7] for mild steel specimens
of two grain sizes; one a large grain-size material with 346 grains/mm? and the other a
small grain-size material having 2030 grains/mm?. These curves have been replotted for
large strains (>2 percent) in Figs. 1(a) and 1(b), as o — f(¢) against log . For strain rates
exceeding 0-1 sec™! the data lies on straight lines which indicate reasonable values of o,
and 7 to be 26,000 psi and 10~ 2 sec for both materials. It follows that Eat/a, is about 10
when a = 1sec™ ! and the deviation of the results from a straight line near « = 0-1 sec™?
must then be expected.

fesi T-f(€)
20 346 graing/mwm’ I
—/B—
_w/‘né strain%
10 - a 2o
}/w-//? a 22
" 30
‘J/ v 35
from Ref .
[+ .
01 +0 100 Strain
(a) -1
&si g T-f@ Rate, Sec
20 2033 gvaing /mmt
—— 1 1
l R
[ . r/ﬂ [Stain %
; % __ v %0
o ! - — T v s
y —a A 40
— A X 48
[+ 50 fromRef
o
=3 0 100 strain
(b) Rate, Sec™?

FIG. 1. Stress difference o— f(¢) against logarithm of strain rate. Replotted from data taken from
Marsh and Campbell [7].

The formula above is an asymptotic one and if changes in strain rate have occurred in
the strain history of the test from which the data is obtained it is clear from the exact
formula (5) that test points corresponding to strains or times close to the changes cannot
be given by (7). It is a surprising result that o, and t do not appear, at least from the two
materials studied, to be dependent on grain size. This would be an extremely useful con-
clusion if it were to be substantiated by the data on mild steel of other grain sizes.

2.2 Yield point determination

The above formulae contain as a parameter the delay time ;. To estimate ¢, use will
be made of published experimental data by Campbell and Marsh [7]. In their tests, mild
steel specimens of various grain sizes were loaded dynamically in compression under
constant stress. It was found that the delay time is dependent on the applied constant
stress and on the grain size. The authors discussed a number of models and found that
the one which best corresponds to the data is the hypothesis that macroscopic yielding
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can only occur when a critical fraction of the grains contain released dislocations. For
uniform grain size this gives the result.

_Ao'op

“= P\,
where o is the constant stress and o is twice the shear stress required to release a source
in the absence of thermal fluctuations and d is the average grain diameter. Taking o as
2G/45 the value of A obtained from the data was 1-2 x 10~ % mm? sec and B was approxi-
mately 9.

In situations, as in (6), where the stress is not constant, the determination of the delay
time can only be conjectured. It will be assumed here that the above model is valid and
that the rate of release of dislocations is a function of the applied stress. Thus, if the critical
fraction required for macroscopic yielding is F then the rate R at which this critical fraction
is reached under constant stress is

Afa,\?
R= F/ d3( a) '

Assuming that the same formula will hold for variable stress, the delay time t, will be given
by the solution of
.5
0 A

In the case of constant strain rate ¢ = a, this takes the form

Eaty = o* = {E(1+ B)Acfo/d} /1 +P), (11)

©®

8

V) dr=1. (10)

()

On this basis the upper yield point ¢* is proportional to 1/10-th power of the strain rate.
Since the lower yield point is asymptotically proportional to In a the upper yield point
will increase more rapidly with increasing « than the lower yield point. Substitution of
the values of A4, d, B for the two grain sizes gives

o* = 77,000 o.'/1° psi for 2030 grains/mm?
and
o* = 60,000 /1 psi for 346 grains/mm?.

The indicated static yield points for these two materials are 33,000 psi and 26,500 psi
respectively and suggest a strain rate of the order of 2 x 10™*sec™ L.

Values of 6* computed from (11) and of ¢, and t from the previous section have been
inserted in (7) and (8). The resulting stress—strain curves are shown in Fig. 2(a) and 2(b).
Superposed on these curves are experimental points taken from Marsh and Campbell [7].
There is considerable scatter which may be explained by the fact that the type of test from
which the data is taken was not one in which the strain rate was constant. In fact, the results
were obtained from tests in which the stress was approximately constant. The integrated
form of the constitutive relations as given in (5) indicates that the stress is a functional
of the strain being dependent on the strain history. The exponential terms in the formula
show that the material has a fading memory both with respect to time, as for example
do linear viscoelastic materials, but also with respect to strain. Thus, if the strain changes
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FIG. 2. Stress-strain curves at constant strain rate. Experimental points taken from Marsh and
Campbell [7].
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by a certain amount which with ¢, = 26,000 psi may be around  percent, while the strain
rate remains constant the effect of the previous strain history is negligible. Also this can
apply only for strains at least 4 percent larger than the strain at which yield takes place
since the initial yield is, on the basis of (10), dependent on the stress history up to the point
of yielding the material is elastic up to this point. The subsequent relaxation from the
yield stress thus cannot be represented by an equation of state approach although the large
strain behavior has the possibility of being so represented providing that rapid changes
in the strain rate history do not occur. While it is true that the large strain response of
materials is of primary interest in understanding the interrelation of physical structure
and mechanical response it is the unusual behavior of mild steel at yield and in the immediate
post yield regime which is of considerable technical interest and importance in the under-
standing of impact and related phenomena.

3. APPLICATION TO BEAM BENDING

The preceding development of uniaxial stress—strain relations allows a useful extension
to the bending of beams. In obtaining a moment—curvature relation the usual assumptions
of beam theory will be made, namely, that plane-sections normal to the middle surface
remain plane and normal and that the behavior of the material in tension is identical to
that in compression.

Since the strain rate varies linearly through the cross section, the fiber furthest from
the neutral axis will have the smallest delay time. Thus the cross section will behave
elastically up to a yield moment M* given by the ¢, of the outermost fiber. For times
greater than the delay time of the outermost fiber a yield zone will spread into the beam,
the stress in fibers lying outside this yield zone will be relaxing from the ¢* corresponding
to the strain rate at the fiber in question. The material lying inside the yield zone will
have an elastically increasing fiber stress.

A rectangular cross section {b x 2c) subject to a constant rate of curvature will be
considered. The strain at a point in the cross section distant y from the neutral axis is

€ = enay/C.

The maximum elastic moment carried by the section is
2
M* = gbcza*

where
o* = ( E(1 +ﬂ)§w5ém) i
d
At any time greater than the delay time of the material at y = + ¢ the material in the region

|yl > ¥ is relaxing viscoplastically. The plastic region is determined by the fact that a(¥)
is on the point of yielding. Thus,

E(1+ B)Acts, \+o[5\t+s
@ ¢ '
= Eey,,y/c

o*() = (

c
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Thus

B:  \UB
;,/C=(E_(1_""2f___"ﬁ£") (Ee) (1408, (12)

For |y| > y the stress is given by (7) with a = §,,.y/c and in this region the integration
with respect to y, needed for the computation of the moment induced in the cross section,
must be carried out numerically. For ¢,,, greater 0-5 percent the approximation to (7)
as given by (8) becomes sufficiently accurate to be used in the computation and tue result
for the moment can be given in simple terms. The static stress—strain curve, ¢ = f(g),
for mild steel can usually be represented for strains up to 5 percent by the simple form

f(e) = Eg; &< g
="+ F{e—e,); & < &

In the above ¢* = Eg, is the static lower yield point, F is a work hardening constant, the
term {e—g¢, ) is taken to be zero if the argument is negative and ¢,, is the strain at which
work hardening commences. Using this form of stress strain curve the moment is obtained
as a function of ¢, for fixed é,,, as

M 2E y\3 2
2o s e V(2
M, 3 o.l\c c

+% % [(1—a*x*)In(1 +ax)+(1 —ax)* — (1 —a?) In(1 +a)— (1 —a)?)

F (Zemax + SW)
+%__) T(emax_ £w>2
where M, = bc?a” is the fully plastic static moment, a = Eé,,,t/0. and x = y/c.

The above expression has been worked out for three strain rates, 0-01, 0-15 and 12 sec™
and the resulting moment curves are shown in Fig. 3. Also shown are experimental
curves at strain rates of 0-15 and 12 sec™! carried out by Aspden [8]. The material of the
beams tested by Aspden was a mild steel of slightly different composition and preparation
than that from which the constants were obtained. There is qualitative agreement in that
the very high upper yield moment and rapid relaxation to the lower yield moment which
are a notable feature of Aspden’s results are predicted.

1

4. TRANSVERSE IMPACT OF A MASS ON A BEAM

In this section the upper yield point theory will be used to predict the onset of yielding
in an infinite elastic beam of cross sectional area S, moment of inertia I, density p and
modulus of elasticity E that is struck transversely by a mass m moving before the instant
of impact with velocity ¥, and which remains in contact with the beam after impact. It
can be shown [9] that the bending moment at the point of impact in this case is given by

M(0,t) = 2EIK*V e*erfc[a(\/1)] (13)

where K = (pS/4EI)* and a = 8EIK?/m. The above equation implies that the bending
moment at the instant of impact jumps to the value 2EIK?V, which is independent of m
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FiG. 3. Moment curves at constant rate of curvature. Dotted curves are experimental results by
Aspden [8].

and decays from this value more or less rapidly depending on a and thus on m. If the
upper yield point is ignored then the velocity to produce plastic behavior is given by

VIC = (r/y),

where r = (I/S)* is the radius of gyration of the section, ¢, is the yield strain and C the
velocity of longitudinal waves in the beam material. However, if the upper yield point is
considered the possibility exists that for finite values of the mass the stresses induced by
the impact might decay rapidly enough that they fall to values below the yield stress in a
time which is less than the delay time at the most highly stressed fiber.

The delay time ¢, for the extreme fiber is given by (10) with (13) in the form

d3 2E1K2[y Blta fa2t
== 7 a fi Pdr = 1.
( N ) J‘o ¢ {er (v [cx(\/t)]} dt

Due to the high value of the exponent § the contribution to the integral when the stress is
below the lower yield point is negligible and thus to obtain a bound on V for finite m
it is enough to set t; — oco. Using the substitution s = «?t and suitable manipulations the
above equation can be transformed into an inequality for the range of velocity leading to
elastic impacts. Using the notation

A(B) =[ J.: e?erfe(/s))? ds]_

1/B
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the result becomes

V  roo[A\YH m P
¢ =5l Tsaid]

The integral for A(f) is easily computed numerically and on substituting the same
values of the parameters as used in Sections 2 and 3 the limiting velocities for the two
grain sizes are given by

VvV -2/9
ol Y <175 10_3(8ErInK3) for 2030 grains/mm?
;
and
V y -2/9
> < 1295 x 10—3(8EIK3) for 346 grains/mm?

These results are shown in Fig. 4 from which it is clear that for values of m/8EIK? greater
than 1 the increase in V predicted by this theory over that predicted by the simple theory
is not important. However, for smaller values of m/8EIK? the increase in V can be very
substantial, The application of this to the design of highway guard-rails is being explored.
In this section y is used to denote the distance of the outermost fiber from the neutral axis.

v
¢ ¥0°

6 4
FULL [LINES SHOW LIMITING VELOCITY INCLUDJNG DELAY TIME EFFECT

DOTTED LINES SHOW LIMITING VELOCITY NEGLECTING DELAY TIME | EFFECT

FOR 2030 GR A+ S/ mm2

2
SL FOR 348 GRAINS,

QU Y SPURp AU ApUSOUII SIS S A —p -

M
BE 1K

F1G. 4. Limiting velocity for elastic impact by finite mass.

5. DISCUSSION

It has been the purpose of this paper to demonstrate the possibility of predicting the
behavior of a beam of a material prescribed by a constitutive equation and to relate this
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to experimental results. Although the agreement between the prediction and the experi-
ment is not perfect (the differences are mainly in the strain hardening region and may be
due to differences in the structures of the materials considered here and used for the beam
tests), it is in agreement with the general features of the actual response. The surprising
features of the experimental results namely, the very high upper yield moment and the
rapid relaxation to the lower yield moment are present in the solutions.

At the present time the accuracy of much of the experimental work on dynamic material
behavior is not adequate to allow its use directly in applications. The scatter of the experi-
mental results is such as to call for smoothing technique, by eye for example or by a least
squares method. Whether cither of these methods lead to the best result cannot be ascer-
tained. However, a procedure such as that used to obtain o, and t subjects the data to a
special type of averaging which as we have shown allows useful predictions to be made
of the response of the material in more complex mechanical situations within the same
range of strain and strain rate. The possibility of using much of the available experimental
data in structural problems is a very important one since the strain rates necessary to
produce a doubling of the yield moment are of the order of 10 sec™! which could be ex-
perienced by building structures during earthquakes or other forms of impact loading.
The problem of impact of a mass on a beam examined in Section 4 although it only touches
the surface of this field shows that the consequences of rate effects in structural problems
can be substantial.

Acknowledgement—This paper was prepared under research grant No. GK-1065 from the National Science
Foundation.
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Résumé—Une description empirique de la proportion du comportement sensible de I’acier doux basée sur une
dépendance logarithmique de I'effort d’écoulement sur la proportion de tension est examinée en détails. Il est
démontré que la loi pourvoir une bonne représentation de reaction de matériel pour des tensions allant jusqu’a
5.0%. Le phénoméne de rendement délayé, qui est une caractéristique frappante du comportement de ’acier doux
est inclu et un mécanisme, antérieurement trouvé exact dans la représentation du délai de temps sous des historiques
de tensions complexes. La relaxation du point supérieur de rendement résultant du délai de temps en une situation
de proportion de contrainte constant est prescrite par la proportion de comportement sensible du matériel.

11 est démontré que la réaction du matériel est fonctionnelle & Phistorique de la contrainte et a une faible
mémoire en tension aussi bien quen temps. La tension caractéristique de mémoire est constatée petite ainsi pour
de grandes tensions I'influence de I'historique est petite et une équation de représentation d’état est appropriée.
Pour de petites tensions et des historiques de contrainte pour les types changeant rapidement la représentation
intégrale doit étre employée.
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La théorie est appliquée a la prédiction de la réaction d’une poutre sujette 4 une proportion constante de
courbure et la réaction prédite comparée avec des données expérimentales publiées. De plus, Le choc transversal
d’une masse sur une poutre est investigué et la théorie est employée pour prévoir les charges de rendement sur
la poutre. C’est un important probléme pour les plans des rails de protection des autoroutes.

Zusammenfassung—FEine empirische Beschreibung des geschwindigkeitsabhingigen Verhaltens von Stahl, das
auf der logarithmischen Abhingigkeit des Spannungsflusses von der Dehnungsgeschwindigkeit beruht wird
gegeben und genau untersucht. Es wird gezeigt, dass die Regel eine gute Darstellung fiir Spannungen bis zu 59,
gibt. Das Phenomen des verzdgerten Flusses, eine bemerkenswerte Eigenschaft unlegierten Stahles ist inbegriffen,
wie auch der Mechanismus der frither gefunden wurde und die Verzdgerung genau darstellt, auch wenn die
Umstinde komplex sind. Die Relaxation von der oberen Fliessgrenze, als Resuitat der Verzdgerung bei konstanter
Spannung, wird als Eigenschaft des Geschwindigkeitsabhidngigen Materiales beschrieben. Es wird gezeigt, dass
das Ansprechen des Materiales eine Funktion der Spannunggeschichte ist, das Gedichtnis wird geschwicht
sowohl in Zeit wie in Spannung. Die charakteristische Gedichtnisspannung ist so klein, dass der Einfluss des
Schwindens bei grossen Spannungen unbedeutend ist, und eine Gleichung die den Zustand gibt ist angebracht.
Fiir kleine Spannungen und Geschichten die sich schnell &ndern, muss Integral-Darstellung angewandt werden.

Die Theorie wird angewandt um das Verhalten eines Balkens vorherzusagen, der stindiger Biegung unterliegt,
die Vorhersage wird mit veroffentlichten Versuchsresultaten verglichen. Ferner wird der Querschlag einer Masse
auf einen Balken untersucht und die Theorie angewandt um das Fliessen vorherzusagen. Das Problem ist fiir
Strassen-Schutzgelinde von Wichtigkeit.

AbcTpakT—Vccreayercs B qeTansix 3MIIMPHYECKOE ONMUCAHME ITOBEAECHUS MATKOW CTajiM, YyBCTBHUTENBHOMK
K CKOPOCTH, OCHOBAHHOTO Ha JIOrapudMHH4ECKON 3aBUCHMOCTH TEYEHHS HAMPSKEHHN OT CKOPOCTH aedop-
manuu. TToka3aHo, YTO 3aKOH MPEAOCTABIIAET Xopollee H300pakeHHe OTBETHON peakUMu MaTepHasia s
nepopMaunii 1o okoso 5.0%. BKIOYEHO fBNEHME 3aOEpKAHMA TEKYYeCTH, KOTOPOE IMOPA3HTESIbHO Xa-
pPaxTEPHO ISl OBEACHUS MAJIOYIJIEPOAHCTON CTAIM U paHee HalJEHHBIX MEXAHU3M TOYEH B H300pakeHUH
WUCTOPHH BPEMEHH 3aJE€PXKKH MO CIOXHBIM HampsbkeHHeM. Penaxkcauusi oT BepxHed TOYKH TeKy4eCTH,
TONy4Yarolascss B pe3y/JbTATE BPEMEHM 3aNEPXKKA B TOJIOKEHUM ITOCTOSHHON CKOpOCTH AehOpMauuu
NIPHNHCBIBAETCH MMOBEAEHHIO YYBCTBUTENIBHOTO K CKOPOCTH MaTepuara.

VKa3bIBaeTCA, YTO OTBETHAs PEaKLMs MATEpHala Npencrasisier u3 ceOs (GyHKUMIO UCTOPHH HAIps-
weHust U obsiamaer 3atyxaroule#t maMaThio, kak nepopMaluH, TaKk u BpeMeHd. XapakTepHas aepopmauus
TAMATH HalaeHa Masol Tak uTo s Gosbliux gedopMaudil BIIMSHUE UCTOPHM HE BEJMKO M YpPaBHEHUE
MpeACTaB/IeHUs] COCTOAHUA COOTBeTCTBeHHO. [Ins Masneix gedopmarmit n uctopuit nedpopmauuu GuicTpO
H3MEHSAIOLIEIOC THNA JOJIKHO YIOTPeOISThCA HHTErpaibHoe H3o0paxeHue.

Jlna npeackasaHus OTBETHON peaxumd Oajiku NMPUMEHSETCS TEOPUS B 3aBUCUMOCTH OT TIOCTOSHHOM
CKOPOCTH KPHMBH3HBI M TIPENCKA3aHHAS OTBETHAsA DPeaklMsi CPaBHUBACTCA C ONMyONNKOBaHHBIMHM JKCIIe-
PUMEHTANBHBIMY NAHHBIMH.

B noOMOJIHEHWE UCCIEAYETCHA TONMEPEYHbIM ynap Maccel Ha 6ajky W TIPMMEHSETCS TEOPHS, HTOOBI
fIpeAcKasaTh Havano miactuyeckod nedopmaunu B H6anke.

INpo6ema BaxHa NPH MPOIKTUPOBKE JOPOKHOTO OTrPAXKACHHS.



